

NCAT Test Track Research Update Pennsylvania Asphalt Pavement Association Annual Conference

Randy C. West

America's Asphalt Pavement Proving Ground

And the second of the second s

Turnkey Research

Test sections are evaluated continuously over 3 year cycles
2021 began our 8th cycle
46 Test Sections, 200 ft. each
5 trucks each pulling 3 heavily loaded trailers make 400 laps/day

NCAT Test Track Facts

Findings from 20 years of Test Track Research

For more information...visit: www.ncat.us

NCAT TEST TRACK 2000-2018 RESEARCH FINDINGS

Since the results of experiments are typically evident in the performance of the sections, the findings are generally easy to interpret. This gives highway agency sponsors confidence to make decisions regarding their specifications, construction practices and pavement design methods that can improve the performance of their roadways. Industry sponsors use the track to publicly and convincingly demonstrate their technology to the pavement engineering community.

Types of Test Track Experiments

- 1. Structural Experiments
 - Full-depth reconstruction of cross-section
 - Instrumented with stress & strain sensors and temperature probes.
 - FWD testing throughout experiment

2. Surface-layer Experiments

- Only upper layer(s) replaced
- No instrumentation

Structural Experiments

Revised Asphalt Layer Coefficient, a₁

1993 AASHTO Pavement Design Guide

Analysis based on...

- ✓ Lab Modulus
- Field deflections and backcalculation
- Field Performance

Mechanistic-Empirical Design Procedures

national calibration coefficients.

calibration.

coefficients.

TxME

 Several non-traditional asphalt mixtures and other materials have been validated.

MEPDG over-predicted rutting by 50-100% using default

MEPDG fatigue prediction was poor even after adjusting

All of these programs have used NCAT test sections for model

Perpetual Pavement Strain Distributions

Highly Modified HMA Structural Assessment

5.75 inches vs 7 inches
 Same mix designs in surface, intermediate, and base layers
 HiMA

\$1.25" (18%)

- Control section: 10% of lane area fatigue cracking
- HiMA section: 6% of lane area top-down cracking

National Center for Rephale Technology NCAT

Cold Central Plant Recycling

110.00

ADTEC

ADTEC

Other Structural Experiments

Surface Mix Experiments

Refinements to Mix Design Specifications

- Fine and coarse Superpave mixes perform similarly regardless of aggregate type
- PG 76 vs PG 67 reduces rutting approximately 50%
- Dense-graded as rut resistant as SMA, but SMA is more durable
- Lowering N_{design} is OK
- **50%** RAP mixes perform equal to virgin

mixtures in all lavers

Indiana Low Air Voids Experiment

Aggregate Specifications

Elimination of the Restricted Zone
 Evaluation of marginal aggregate
 Gravel suitability in SMA & OGFC
 Higher F&E content for SMA & OGFC
 Maximum limestone content for friction

Cracking Group Experiment

Which Tests Correlate to Field the Best?

Energy Ratio

SCB-LA

I-FIT

ΟΤ-ΤΧ

OT-NCAT

AMPT Cyclic Fatigue

Balanced Mix Design

- Comparison of BMD vs.
 Superpave
- Preliminary validation of BMD criteria
- Evaluation of innovative additives for improving mix performance and increasing sustainability
- Combining BMD and friction
 assessment for curface layers
 NCAT Test Track

BMD Resources

Scan this code or visit aub.ie/bmd for useful resources related to balanced mix design

The Bucket Brigade

Overview of the NCAT & MnROAD Additive Group Experiment

Additive Group Experiment

- A new experiment to comprehensively evaluate sustainable and resilient pavement technologies
- Continuation of the partnership between NCAT and MnROAD to address national needs

MnROAD

NCAT Additive Group Sponsors

Overall Additive Group Plan

NCAT conducts Phase I lab study to evaluate potential additive products

NCAT shares Phase I results with state DOTs

Construct AG test

Construct AG testConstruct AG testsections on MnROADsections on Test Track

State DOTs select additives for the AG experiment

Phase 1 Additive Technologies

Phase 2 Additive Technologies

Complementary Sections

Additive Group Experimental Scope

CAT ALE CALL RESEARCH Cycle

NCAT Track

NCAT Additive Group Experiment Design

Control

Additive 1

Additive 2 ...

Build & Evaluate AG Test Sections

N1 – Entech wet process GTR

N2 – Liberty SmartMix

S6 generic "LDPE rich" dry plastic

S7 Dow wet plastic

S13 B2Last

Construction QA Results

	Torgot	Control	Dry	Wet	Dry	Wet	Lipon
	Target	Control	readur	ruper	plastic	plastic	Fibers
Section		N7	N1	N2	S5	S6	N5
P _b (%)	5.6	5.7	5.6*	5.8	5.8	5.7	5.5
P _{2.36}	41	41	45	42	43	42	40
P _{0.075}	4.3	4.0	4.3	4.1	3.8	4.0	3.8
Hot Comp. CT _{Index}		101	64	41	40	74	94
Hot Comp. RT _{Index}		85	91	128	144.3	83	98
In-Place Density	> 93.0	95.9	93.7	94.1	93.5	93.9	94.2

Questions and Answers

