

65th Annual PAPA Conference 2025

Development of Field Compaction Curves for Asphalt Mixtures Based on Laboratory Workability Tests

Shihui Shen, Zhen Liu, Shuai Yu January 22th, 2025

PART I Introduction

PART II Methodology

PART III Results and Discussion

PART IV Conclusions

PART I Introduction

1. Introduction

Mix Workability and Compaction

- > Workability: how easily the mix can be compacted.
- Good workability can help distribute particles more evenly during compaction.

Viscoelastic material

Modified asphalt mixture

Good workability is affected by material property and compaction conditions

□ Mix Workability and Compaction

✓ How to assess field compaction?

Non-destructive testing (NDT) technologies

Intelligent compaction (IC) technologies

(Wang, S., et al., 2022)

Our Innovation: integrating wireless sensors and ML modeling

(Wang, X., et al., 2018; Cheng, Z., et al., 2022; Shuai Y., et al., 2022; Shuai Y., et al., 2023)

- Portable and embeddable for both lab and field testing
- Collect real-time motion data (rotation, acceleration, etc.)
- Compatible with ASTM D8541 for workability assessment
- Machine learning models for prediction

- An innovative monitoring system and methodology to assess the compaction behavior of asphalt mixtures by utilizing AI and sensing technologies.
- To develop the field compaction curve
- To provide guidance for asphalt mixture design

PART II Methodology

II. Methodology

□ Hypothesis: Rotation for Effective Compaction

II. Methodology

Pavement Structures and Materials

	Bay A			Bay B			Bay C		Bay D	
Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7	Lane 8	Lane 9	Lane 10	Lane 11
Mix Types Study		(Premium) Binders Study		Top-down / Durability / High RAP Study			Inverted Pavement Study			
SM	A Study	Resiliency Study	Premium Stu	n Binders 1dy	Resiliency Study	High RA	AP Study	Resiliency Study	Short-ter AC Thicl	m Studies kness < 2"
2" DGA 64H-22 20%RAP (SBS)	2" SMA 64H-22 20%RAP (SBS+Fiber)	2" Control- DGA 64S-22 20%RAP	2" DGA 64E-22 20%RAP	2" DGA 64S-22 40%RAP	2" Control- DGA 64S-22 20%RAP	2" DGA 64S-22 40%RAP Bio RA	2" DGA 64S-22 40%RAP Petroleum RA	2" Control- DGA 64S-22 20%RAP	1.5" DGA PG 64S-22	2" DGA PG 64S- 22 0%
2"DGA 64H-22 20%RAF (SBS)	2"SMA 64H-22 20%RAP (SBS+Fiber)	2"Control- DGA 64S-22 20%RAP	2"Control- DGA 64S-22 20%RAP	2"Control- DGA 64S-22 20%RAP	2"Control- DGA 64S-22 20%RAP	2"Control- DGA 64S-22 20%RAP	2"Control- DGA 64S-22 20%RAP	2"Control- DGA 64S-22 20%RAP	0% RAP 9.5mm mix	RAP 9.5mm mix
	SMA 20% RAP		·		·	HMA 40% RAP Bio RA	HMA 40% RAP Petroleum RA	HMA 20% RAP		

Pavement Structures and Materials

Pavement Structures and Materials

Lane	Mix Type	NMAS (mm) ¹	Gmb	Design VA (%)	RAP content (%)	Pb (%) ²	Asphalt binder	Compaction Temperature (°C)
2	SMA	12.5	2.567	3.0%	20	6.4	64E-22	145
7	HMA	12.5	2.599	3.7%	40	5.8	64S-22	135
8	HMA	12.5	2.599	3.7%	40	5.8	64S-22	135
9	HMA	12.5	2.602	3.5%	20	5.8	64S-22	135

II. Methodology

Pavement Structures and Materials

Pavement Structures and Materials

FHWA Pavement Testing Facility (PTF) 2023 project

Information on the vibratory rollers

Lane	Compactor	Frequency (Hz)	Speed (m/s)	Width (m)	Amplitude (mm)	Weight (tons)	Centrifugal force (<u>kN</u>)	Number of roller passes	Final density (g/cm ³)
2		50.7	1.14	3.66	0.87	12.87	177	10.6	2.575
7	Sakai	65.7	1.00	4.27	0.49	12.87	177	4.1	2.550
8	SW880-1	66.0	1.02	3.66	0.48	12.87	177	4.6	2.565
9		48.6	1.19	4.27	0.47	12.87	177	7.8	2.592

II. Methodology

Laboratory Workability Test

ASTM D8541

Relative Rotation Capacity (RRC) can be calculated from the particle rotation curves using the analysis software.

II. Methodology

Compaction Energy Calculation

$$E_v = \frac{2Af}{v\rho hb} \left(Wg + \frac{\pi F_e}{4} \right) \qquad \bigstar$$

17

Input									out
Туре	Additive (%)	NMAS (mm)	Binder Type	RAP content (%)	Rotation_x (°)	Rotation_y (°)	Specific energy (J/kg)	Compaction Level	%G _{mm}
0	0.00	9.5	64E	0	1.491	1.340	42.8	1	79.87
1	0.35	12.5	64	0	1.029	1.470	41.9	1	82.26
0	0.00	9.5	76	0	1.005	1.109	293.3	2	89.94
1	0.70	12.5	64	0	1.094	1.017	196.1	3	90.25
0	0.00	12.5	64	0	0.676	0.887	478.9	3	92.32
1	0.35	9.5	76	15	1.175	1.011	492.4	4	92.75
1	0.35	9.5	76	15	0.781	0.787	2233.1	4	96.30
2	0.00	12.5	64	20	0.693	0.546	2708.2	5	96.92

PART III Results and Discussion

Laboratory Workability Test

Relative Rotation Curve

	Lane 2	Lane 7	Lane 8	Lane 9
Sample	SMA, 20% RAP	HMA, 40% RAP, Bio RA	HMA, 40% RAP, Petroleum RA	HMA, 20% RAP
1#	82.62	109.8	146.39	111.60
2#	83.93	129.17	135.85	108.46
3#	82.25	122.92	135.58	101.55
Average	82.93 ± 0.72	120.63 ± 8.06	139.28 ± 5.04	107.21 ± 4.20

- HMA showed higher workability than SMA.
- RA effectively enhanced workability of 40% RAP mixtures.
- Petroleum-based RA slightly better than the specific bio-based RA.

□ Laboratory SGC Test Results

Relative Rotation and Specific Energy

Cycle	Particle rotation under roller (°)	Density-equivalent particle rotation under SGC (°)	Energy-equivalent particle rotation under SGC (°)
1	2.094	1.779	1.705
2	0.950	1.431	1.371
3	0.536	1.396	1.267
4	0.495	1.345	1.189
5	0.566	1.297	1.140
6	0.794	1.236	1.072
7	1.153	1.197	1.024
8	0.063	1.154	0.945
9	0.383	1.134	0.875
10	0.418	1.085	0.838
11	0.273	1.045	0.816

Particle rotation under the same compaction energy.

Yu, Shuai, Shihui Shen, et al. "Data sensing and compaction condition modeling for asphalt pavements." Automation in Construction 154 (2023): 105021.

This relationship is fundamental for a specific mix.

Experimental Results

Regression Model for Density

110

train

test

- Compaction energy external control factor (most significant)
 - The higher the specific energy values, the greater the predicted density (% G_{mm}).
- Rotation internal response factor (significant and mix specific)
 - With the rotation values decrease, the predicted density achieves the maximum (%G_{mm}).
- > Other influencing factors: binder, NMAS, RAP content, mix type, additive

□ Model Calibration based on Field Compaction Data

35 field cores were taken from each lane of the FHWA PTF sections to obtain the average density

	Measure	ed Values	Predic	cted values		
Lanes	%G _{mm}	Compaction level	%G _{mm}	Compaction level	Error	
Lane 2	96.62%	5	96.72%	5	0.10%	
Lane 7	95.76%	4	94.76%	4	1.04%	
Lane 8	97.86%	5	97.15%	5	0.73%	
Lane 9	96.61%	5	96.25%	4	0.37%	

> The average error in $%G_{mm}$ prediction for the four lanes was within 1%.

Only one test point in lane 9 showed a slight deviation, it still demonstrates that the model achieved excellent results in calibration with field-measured data.

Development of Field Compaction Curves

24

Model Validation and Hypothesis Reasonableness

Predicted field compaction curves for Altoona, PA project (HD Static and 120i VO Tandem Rollers)

Model Validation and Hypothesis Reasonableness

Predicted field compaction curves for Angola, IN project (Dynapac CC7200 for static and vibratory rollers)

PART IV Conclusions

- Compaction energy and particle rotation are critical parameters.
- Field compaction curves were developed.
- Insights into compaction applications
 - Determine compaction temperatures
 - Guide mix design and identify potential problematic mixtures in terms of compaction behaviors.
 - Plan compaction patterns and select roller parameters
 - Compaction density QA/QC

WMA Applications: Effect of Temperature, Additive, and Roller

- > Green: Mix 4 (290F, HMA)
- Blue: Mix 6 (230F, 0.7% additive)
- Red: Mix 7 (290F, 0.7% additive)
- Compactor: HD + 120i VO Tandem Roller
- Specific Energy: 107.9 J/kg

- Green: Mix 4 (290F, HMA)
- Blue: Mix 6 (230F, 0.7% additive)
- Red: Mix 7 (290F, 0.7% additive)
- Compactor: CAT CB4.4 + Sakai SW880-1 roller

29

Specific Energy: 220.42 J/kg

Acknowledgments

- ➢ Funding Support: USDOT CAMTIS UTC.
- > Materials and field data: FHWA Turner-Fairbank Highway Research Center.
- Field testing support: Ingevity Corporation, New Enterprise Stone & Lime Co. Inc., Brooks Construction, and PennDOT.
- > SmartKli[®] (MixWorx[™]) sensor: Railroad Technology & Services (RTS), LLC.; InstroTek.

Thank you!

We are looking for field implementation projects in 2025!

Contact: Shihui Shen szs20@psu.edu