BMD IMPLEMENTATION STATUS UPDATE

JAY SENGOZ MARCH 14,15,16, 2023

PENNDOT BY THE NUMBERS

- Dated January 21, 2022
- IMPLEMENTATION OF BMD FOR WEARING COURSE MIX DESIGNS
- FULL IMPLEMENTATION WILL BE PHASED OVER 3 YEARS
- BULLETIN 27 CHAPTER 2A REVISED TO INCLUDE THE SUBMISSION OF BMD DATA

SOL 481-22-01

YEAR 2023

• ALL < 0.3 MILLION DESIGN ESAL WEARING COURSE JMFs

YEAR 2024• ALL WEARING COURSE JMFs

IMPLEMENTATION PHASES

- Less than 0.3 Million ESAL (50 gyration) wearing course JMFs submitted for the 2023 design year. (This year)
 - Will <u>require</u> performance testing to be input into eCAMMS for information only.
 - DMEs <u>may</u> approve less than 0.3 million ESAL wearing course JMFs without performance testing on a case-by-case basis. (The data still needs to be input.)
- All wearing course JMFs submitted for the 2024 JMF design year.

(Next Year)

- Performance testing entry into eCAMMS is <u>required before JMF</u> <u>approval is given</u>.
- Only effects wearing course mixtures.
- After the 2024 construction season either limits will be set or the data acquisition process will be adjusted and continued so that <u>meaningful and achievable limits</u> can be established.

BALANCED MIX DESIGN

- Adding Performance Testing (No required limits yet. Just Testing)
 - Hamburg Wheel Track Testing (HWT, AASHTO T 324):
 - Rutting
 - Cracking Tolerance Index Testing (CT-Index, ASTM D8225):
 - Cracking
 - Characterizing the Relaxation Behavior of Asphalt Binders Using the Delta Tc (ΔTc) Parameter (AASHTO PP 113-21):
 - Only for JMFs over RBR of 0.35 and above
 - High RAP/RAS/Recycled mixtures cracking.

PSU RESEARCH PROJECT

- EVALUATION OF ASPHALT TESTING PROTOCOLS IN PA
- NTP July 15, 2022
- DURATION: 38 Months
- ESTIMATED COMPLETION: September 15, 2025
- SCOPE: Assist PennDOT with the validation and implementation of asphalt-related performance testing methods, limits, and protocols that best predict asphalt rutting and cracking in the Pennsylvania climate, using aggregates and other materials used in PA.

PSU RESEARCH PROJECT

TIMELINE

Task	Description Estin	nated Task Del	ivery
1	Summary Report of Literature Review	3 months	Complete
2	Database of Available Experimental Data	4 months	Complete
3	Summary Report of Data Analysis and Gap Identification	ion 10 months	In progress
4	Experimental Plan	12 months	
5	Summary Report of Test Results in Database	27 months	
6	Summary Report of Data Analysis and BMD Verificati	on 30 months	
7	Summary Report of Demand Driven Verification Testin	ng 30 months	
8	Summary Report of Performance Limits Validation	33 months	
9	Draft Final Report	35 months	
10	Final Report	38 months	

PSU RESEARCH PROJECT

Table 1	Parameters	Included in	the l	NECEPT	Database o	f Performance	Test Results
---------	------------	-------------	-------	--------	------------	---------------	--------------

C	Descheller	Response Parameters						
Control Parameters	Description	IDEAL-CT	HWTT	I-FIT				
Aggregate Source	Limestone, sandstone, and gravel	Peak Load (N)	SIP	Peak Load (N)				
NMAS	9.5 and 19mm	Fracture Energy (J/m ⁴ 2)	Strip Creep Ratio	Fracture Energy (J/m2)				
Binder Grade	PG64-22, PG58-28	IDEAL-CT Index (NECEPT)	Max Rut Depth (mm)	Flexibility Index				
Binder Source	UR and AA	IDEAL-CT Index (TTI)	No. of Passes to Max. Rut Depth	Stiffness (MPa)				
Virgin binder content	3.2 to 7.8%	Peak Tensile Stress (KPa)	No. of Passes to 10 mm Rut Depth	Stiffness Index (N/m)				
Recycled Binder Content	0.0 to 1.9%	Peak Tensile Stress (PSI)	No. of Passes to 12.5 mm Rut Depth	Strain at Peak Stress (%)				
Total Binder Content	4.8 to 7.8%	Strain at Peak Rut Depth at 10,000 Stress (%) Passes (mm)		Displacement at Peak Load (mm)				
Aging Condition	Unaged, ST, LT (both loose and compacted)	Displacement at Peak Load (mm)	Creep Slope (mm/1000 passes)	Work of Fracture (J)				
Additive Type	RAP, RAS, Rej, CRM, antistrip	Work of Fracture (J)	Stripping Slope (mm/1,000 passes)	Accumulated Energy to Peak Load (J/m²)				
Additive Content	RAP:0-35%, RAS:0-8%, CRM:0-15%, Rej:0-0.3%							
Testing Temperature	IDEAL:25°C, HWTT: 50°C, I-FIT: 20°C							

V	0									7
				AB	Maladara	Teste	TD 1/17 Def #-	Sample #	00	
Home	Sample	JIME	ESB	Product Evaluation	Maintenance	<u>1</u> 00IS		Sample #.	00	Search
Current	System S	Status :		10					5 5045	à
eCAMM	ire currer ISSuppoi	rt@pa.g	jov.	issues. If you expe	rience any iss	sues, repor	t them immediately to eCA	wims Support at 717.42	25.5815 or ema	
E-T	ICKE	TIN	G-	Learning	Opportu	inity				
PennDo PennDo	OT and H OT projec	aulHub ts.	repres	entatives discuss so	me of the freq	uently aske	d questions about moving to	wards an all-electronic	ticketing prog	ram for
If you r	nissed the	e live w	ebinar	or would like to rev	iew the inform	nation that v	was shared, please use the li	nk below to access the	video.	
Click H	Iere To V	Vatch								
_										_

NEW! - 2023 JMF Reference Data Type Submissions (CT Index & Hamburg Tests)

Suppliers are required to submit additional JMF Reference Data for the 2023 Wearing Course N_{design} = 50 Gyration JMFs. <u>Click here</u> for the full list and definitions of the new JMF Reference Data fields.

E-mail notification dated 12/7/2022

	eCAMMS Reference Data Type fields	Description
	Existing CT-Index: CTI Cracking Index	Average Cracking Tolerance Index of all specimens, (unitless)
10	Existing CT-Index: Gf (joules/m2)	Average Failure Energy of all specimens [Area under the load vs. the average Load-Line Displacement (LLD) curve], (Joules/m ²)
1.1	Existing CT-Index: L75 (mm)	Average Post peak displacement at 75% of peak load of all specimens, (mm)
2	Existing CT-Index: M75 Slope (N/m)	Average post-peak slope at 75% of peak load of all specimens, (N/m)
X N	Existing CT-Index: Wf (joules)	Average Work of failure of all specimens, (Joules)
0 8	New CT-Indx: Avg Peak Load (kN)	Average of the Peak Loads of all specimens, (kN)
Ξū	New CT-Indx: Avg Disp.@Peak Ld	Average Displacement of all specimens at Peak Load, (mm)
ΞΣ	New CT-Indx: Pk Tens.Str. (kPa)	Average Peak Tensile Strength of all specimens, (kPa)
5 L	New CT-Indx: No. of Specimns (n)	Number of specimens, (n)
A	New CT-Indx : Cracking Index COV	COV = Coefficient of variation for the CT Index, (%)
	New CT-Indx: Average Air Voids	Average air voids of all specimens (Each individual specimen air void has to be within 7% ± 0.5%), (%)
	New CT-Indx: Test Equip.Man/Modl	Testing Equipment Manufacturer and Model, (Text)
	New CT-Indx: Testing Lab	Name of the Testing Lab, (Text)
	Existing HWT: 10K Impression	Average maximum rut depth of test specimens in Left and Right Wheel Tracks at 10,000 passes, (mm)
	Existing HWT: 12.5 mm Passes	Average Number of Passes on test specimens in Left and Right Wheel Tracks at 12.5 mm rut depth, (N passes)
	Existing HWT: 20K Impression	Average maximum rut depth of test specimens in Left and Right Wheel Tracks at 20,000 passes, (mm)
F	Existing HWT: SIP Passes	Average Number of Passes to Stripping Inflection Point (SIP) on test specimens in Left and Right Wheel Tracks, (N passes)
3	New HWT: Creep Slope - Avg	Average Creep Slope of test specimens in Left and Right Wheel Tracks, (Calculated)
I	New HWT: Stripping Slope - Avg	Average Stripping Slope of test specimens in Left and Right Wheel Tracks, (Calculated)
~	New HWT: 10K Impression-Lt (mm)	Maximum rut depth of test specimens in Left Wheel Track at 10,000 cycles, (mm)
Ŭ.	New HWT: 12.5 mm Passes - Left	Number of passes to reach 12.5 mm rut depth on test specimens in Left Wheel Track, (N passes)
A A	New HWT: 20K Impression-Lt (mm)	Maximum rut depth of test specimens in Left Wheel Track at 20,000 cycles, (mm)
3 L	New HWT: Creep Slope - Left	Creep slope of test specimens in Left Wheel Track, (Calculated)
SE	New HWT: Stripping Slope - Left	Stripping slope of test specimens in Left Wheel Track, (Calculated)
шo	New HWT: No.of passes@max rut-Lt	Number of passes reached for test specimens in Left Wheel Track at maximum rut depth, (N passes)
ΨE	New HWT: Specimen #1 Air Void-Lt	Air Voids of test specimen #1 in Left Wheel Track (has to be within 7% ± 0.5%), (%)
1 I	New HWT: Specimen #2 Air Void-Lt	Air Voids of test specimen #2 in Left Wheel Track (has to be within 7% ± 0.5%), (%)
> A	New HWT: 10K Impression-Rt (mm)	Maximum rut depth of test specimens in Right Wheel Track at 10,000 cycles, (mm)
UA	New HWT: 12.5 mm Passes - Right	Number of passes to reach 12.5 mm rut depth on test specimens in Right Wheel Track, (N passes)
R	New HWT: 20K Impression-Rt (mm)	Maximum rut depth of test specimens in Right Wheel Track at 20,000 passes, (mm)
8	New HWT: Creep Slope - Right	Creep slope of test specimens in Right Wheel Track, (Calculated)
5	New HWT: Stripping Slope - Right	Stripping slope of test specimens in Right Wheel Track, (Calculated)
A	New HWT: No.of passes@max rut-Rt	Number of passes reached for test specimens in Right Wheel Track at maximum rut depth, (N passes)
Î	New HWT: Specimen #1 Air Void-Rt	Air Voids of test specimen #1 in Right Wheel Track (has to be within 7% ± 0.5%), (%)
	New HWT: Specimen #2 Air Void-Rt	Air Voids of test specimen #2 in Right Wheel Track (has to be within 7% ± 0.5%), (%)
	New HWT: Test Equip.Man./Model	Testing Equipment Manufacturer and Model, (Text)
	New HWT: Testing Lab	Name of the Testing Lab, (Text)

E-mail notification dated 12/7/2022

ASTM D8225 - Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature

E-mail notification dated 12/7/2022

AASHTO T 324 Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures

HWT: 10K	Impression-Lt (mm)	HWT: 10K Impressio	on-Rt (mm)				
	6.447	4.419					
	2.836	2.356					
	2.726	3.960					
	9.654	20.070					
	0	0.000					
	5.637	10.014					
	7.340	17.221					
	4.62	4.05					
	14.866	17.643					
	14.866	17.643					
	7.716	10.672					

	IDEAL TESTING REPORT																		
		Diame	Thickn	Starting	Stopping	Max			Displace	Peak Load	IDT	Peak	Flow	Total	Energy to	FAILURE	Т	IDEAL-CT	Post-Peak
		ter	ess	Load	Load	SP			@ 75%	Stability	Strength	Displacement		Energy	Peak	ENERGY	e m		Slope 75%
Date	Time	mm	mm	(kN)	(%)	GR	Voids	%AC	mm	kN	kPa	mm	(0.01 inch)	(Joules)	(Joules)	joules m^2	р	Index	N/MM
6/23/2021	9:58 AM	150	62	0.1	0.1	2.527	7.1	4.4	3.9	14.97	1025	2.31	9.1	79.83	27.83	8584.2	25	65.038	-3461.3
6/23/2021	10:01 AM	150	62	0.1	0.1	2.527	7.0	4.4	3.5	16.01	1096	2.17	8.5	66.17	23.56	7115.1	25	36.288	-4575.8
6/23/2021	10:02 AM	150	62	0.1	0.1	2.527	6.9	4.4	4.8	13.83	947	2.04	8	82.17	22.04	8835.7	25	97.315	-2909.5
6/23/2021	10:06 AM	150	62	0.1	0.1	2.523	7.0	4.4	5.1	14.26	976	2.87	11.3	86.88	30.6	9342.3	25	95.039	-3355.9
6/23/2021	10:08 AM	150	62	0.1	0.1	2.523	6.8	4.4	4.6	15.16	1037	2.52	9.9	85.96	30.56	9243.3	25	95.945	-2926
6/23/2021	10:10 AM	150	62	0.1	0.1	2.523	6.7	4.4	5.3	16.4	1123	3.22	12.7	104.91	38.89	11281	25	139.341	-2854.6
6/24/2021	7:51 AM	150	62	0.1	0.1	2.479	7.2	5.8	4.5	14.57	998	2.68	10.5	80.52	30.55	8658.5	25	77.358	-3359
6/24/2021	7:52 AM	150	62	0.1	0.1	2.479	7.1	5.8	4.7	15.16	1038	2.62	10.3	77.06	28.68	8285.7	25	68.09	-3788.3
6/24/2021	7:54 AM	150	62	0.1	0.1	2.479	7.0	5.8	4.6	14.63	1002	2.61	10.3	82.32	30.27	8851.5	25	86.44	-3131.2

- ESTABLISHING THE DATABASE
 - IDENTIFYING THE PARAMETERS
 - IDENTIFYING OUTLIERS
 - SAMPLE VARIABILITY ISSUES

USING MULTIPLE SOURCES IN A JMF

Material Supplier	Material Code - Class	Product Name	% Material	Spec. Grav.	% Absorption
	207 (Aggregate Fine) - B1	Is sand	18.800	2.674	0.78
	207 (Aggregate Fine) - B1	brown sand	18.800	2.568	1.85
	203 (Aggregate) - A8	Is 8's	21.200	2.629	1.00
	203 (Aggregate) - A8	Is 8's	21.100	2.693	0.81
	187 (WMA Technology) - AQUABL	MAXAM	0.000	0.000	0.00
	186 (Asphalt Mixture Additive) - ASTRIP	Sonnegreen AS IV	0.250	1.040	0.00
	17 (Hot Rap Design) - RAP	RAP	15.000	2.715	0.00
UNRC0 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
UNRC1 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
MARA7 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
MARA3 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
MARA8 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
ERIEM 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00

- OTHER POTENTIAL VARIABILITY ISSUES
 - EQUIPMENT
 - TECHNICIANS
 - ETC.

FOLLOW PENNDOT

www.DMV.pa.gov

PennsylvaniaDepartmentofTransportation

0

In

PennDOTNews

PennDOTSec

PennDOTSec

PennsylvaniaDOT

/company/PennDOT

PennsylvaniaDOT

QUESTIONS

Jay Sengoz csengoz@pa.gov

