2023 PAPA REGIONAL CONFERENCE

RESEARCH/PILOTS

Rejuvenator Research Project

Recycled Plastic in Asphalt

Post-Consumer Shingles Research

Fiberless SMA and 5% ≤ 10% RAP

VRAM

HiMA

ASPHALT REJUVENATOR RESEARCH - COMPLETED

- * Two Principal Categories of Rejuvenating Agents (RA's)
 - Petroleum Based
 - Paraffinic oil, aromatic extracts, engine oil
 - Plant Based (Bio-Based)
 - vegetable oil (virgin, modified, or waste), tall oil

OUTCOMES

- Effects on asphalt properties.
 - Softening effects, dosages, interaction with RAP/RAS, ...
 - Inline Blending or Marination of RAP/RAS
- Effects on long term aging resistance.
 - Proved to be effective both short term and long term
- Evaluation performed through Binder Testing and Mixture Testing.

OUTCOMES

- So... What did we find out??
 - Cracking could be mitigated at higher RBR's
 - HWTT rutting typically decreased, as expected.
- Final report is published and includes usage guidelines.
- Next- Determine test(s) for performance evaluation of rejuvenators and mixtures. (Bulletin 15 & Bulletin 27)
 - Future pilot projects.

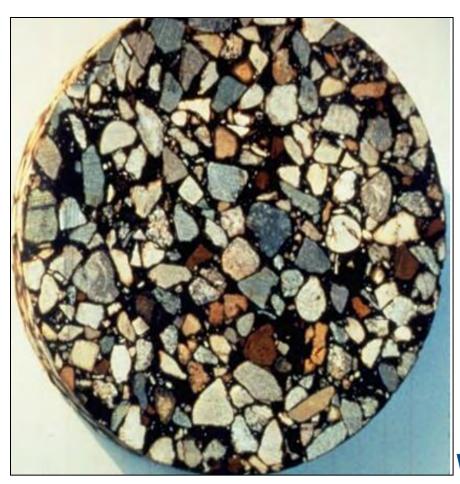
RECYCLED PLASTICS IN ASPHALT

RECYCLED PLASTICS IN ASPHALT

- Research project initiated with PSU- July 2022.
 Anticipated completion Sept. 2025
 - Work on going...
 - Three pilot projects- Two completed Dist. 6 & Dist 11. One planned for Dist. 8 in 2024.
 - Includes field & lab testing from pilot projects.

Stay tuned...

- Current Policy-
- PennDOT allows up to 5% of the mix to be from manufacturer waste asphalt.
- PennDOT specifications do not currently allow <u>post-consumer</u> shingles to be used in asphalt pavements.



- Research project Completed 2021
 - Three pilot projects- Districts 1, 2 & 6 in 2022
 - Includes field & lab testing from pilot projects.
 - Work on going...
 - Specification changes, review & refinement

- Post-consumer shingle processing requirements?
 - Contamination- Nails, wood, residual waste
 - Environmental concerns (asbestos).
 - Post-consumer shingle mix design requirements and techniques?
 - Performance related testing available to evaluate mix design performance.

5% ≤ 10% RAP IN SMA PROJECT

5% < 10% RAP IN SMA PROJECT

- Illinois DOT allows the use of up to 15% of FRAP in SMA mixes
- Illinois Tollways allows up to 20% of FRAP in SMA mixes
- Virginia DOT allows up to 20% of RAP in wearing courses
- Maryland State Highway Administration allows up to 20% of RAP in SMA
- Texas DOT allows up to 15% of FRAP in wearing courses
- Alabama DOT allows up to 20% of RAP in SMA
- Pennsylvania 10% RAP pending research.

RAP IN SMA RESEARCH PROJECTS

District 11 - Allegheny Co.

- ECMS 91790 Let 2/28/2019
- SR 0885 (Boulevard of the Allies)
- Mill, scratch, and overlay with 1.5" 9.5mm SMA
- Paved in 2019 Construction Season.



RAP IN SMA RESEARCH PROJECTS

District 4 - Lackawanna Co.

- ECMS 102557 Let 6/6/2019
- SR 6006, Mill, scratch and overlay with 9.5mm SMA
- Paved in 2021 Construction Season.

USAGE OF 5% < 10% RAP IN SMA

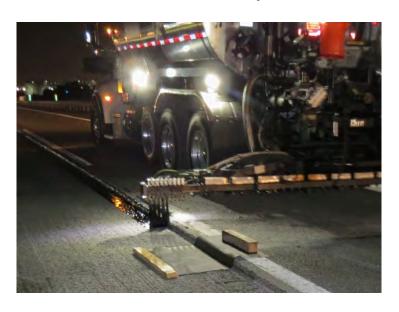
 This change would allow Districts to choose to allow up to 10 percent recycled asphalt pavement (RAP) in SMA mixtures. *Districts would have the option of bidding Virgin or RAP SMA – Different Item Numbers and Descriptions, due to this being a premium mix.

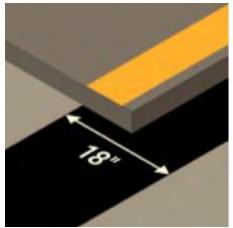
FIBERLESS SMA

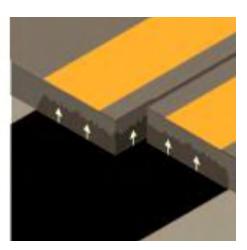
FIBERLESS SMA

- Brief explanation on this presentation, as this topic is being presented later today...
- Cellulose fibers One tool to control draindown.
- Why permit to eliminate cellulose fibers ??
 - Cost of equipment, additional labor, fibers.
 - Plant typically dedicated to SMA material only during production.
 - Fibers clumping during production & placement (PIB!)
 - Correction factors affected...
 - Fiber clumps in mat.
 - Absorb additional asphalt.

FIBERLESS SMA

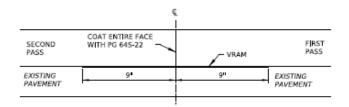

- How can we eliminate fibers ??
 - Utilizing WMA technologies that we now have available.
 - Lower production Temp's. to control drain down.
 - Slight reduction of AC content and VMA due to removal of fibers.
 - Less surface area & absorption.
- Lower Temp's coupled with WMA technologies can have a significant increase in fatigue resistance while still having a workable & compactable mix...
- Detailed presentation of pilot production & placement later today...

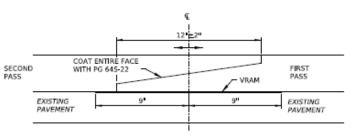



QUICK UPDATES - VRAM & HIMA

Quick updates:

- Void Reducing Asphalt Material (VRAM) for Longitudinal Jt's.
 - Pilots continuing across State.
 - Currently in Clearance Transmittal #1 (CT#1).





VRAM

- Draft RC-28M:
 - Heavy/thick application of polymer modified asphalt at joint.
 - Wicks up into wearing course at joint (Weakest link in mat).
 - Reduces air voids in joint area.

VRAM VERTICAL JOINT DETAIL

VRAM NOTCH WEDGE JOINT DETAIL

www.dot.state.pa.us

HIMA

- Highly Modified Asphalt (HiMA)
 - Polymer content 7% 8%. About twice the amount of traditional polymer modified asphalts, e.g. PG 64E-22.
 - Used for high ESAL roadways to alleviate rutting and increase life, up to 10X rutting and fatigue resistance.
 Another tool in the box...
 - Pilots continuing across State.
 - Goal- Future inclusion into PennDOT Spec's/Pubs.

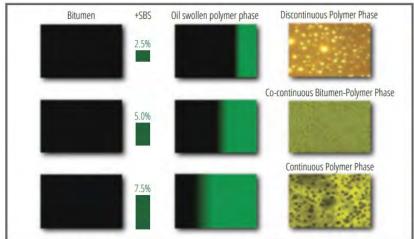


Figure 1. Effect of increasing styrene-butadiene-styrene polymer content on binder/polymer morphology (Source: Kraton Polymers)

HIMA (PG 76E-28HP)

Property		AASHTO Test Method	Requirements by Performance Grade
			PG 76E-28HP
ORIGINAL BINDER			
Flash point temp, °C		T 48	230 min.
Rotational Viscosity, Pa·s	Test temp @ 135°C	T 316	3.0 max. ⁽¹⁾
Dynamic Shear, kPa (G*/sin δ, 10 rad./sec.)	Test temp @ 76°C	T 315	1.00 min.
RTFO RESIDUE			
Mass Change %		T 240	1.00 max.
MSCR, Extremely Heavy Traffic "E",	J _{nr} at 3.2kPa ⁻¹	Т 350	0.1 max.
	% Recovery at 3.2kPa		90 min.
Test Temp @ 76°C	J _{nr} % Difference		
PAV RESIDUE, conditioning temp, time, pressure		R 28	100°C, 20 h, 300 psi
Dynamic Shear, kPa (G*·sin δ, 10 rad./sec.)	Test temp @ 28°C	T 315	6000 max.
Creep Stiffness, S, MPa	Test temp @ −18°C	T 313	300 max.
Creep Stiffness, m-value			0.300 min.
Notes	The Representative may approve an increase in the Rotational Viscosity Limit to 5.0 Pa·s if the binder supplier and Paving Contractor agree that the binder is suitably workable.		

THANK YOU

Kevin Gnegy, P.E. | Pavement Materials
Engineer
PA Department of Transportation | Bureau of
Construction and Materials
Materials Division

Phone: 814.317.3147 Email: kgnegy@pa.gov

